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TORSIONAL VIBRATION ANALYSIS OF
SUSPENSION BRIDGES WITH GRAVITATIONAL

STIFFNESS
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An analytical method for determining natural frequencies and mode shapes of torsional
vibration of suspension bridges is developed by using the linearized deflection theory. This
method takes into account the effect of gravitational stiffness due to dead loads of the
stiffening girders, and its effect on natural frequencies of torsional vibration is investigated.
A numerical example using data of an actual long-span suspension bridge is presented, and
the computed results are given in tabular form.
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1. INTRODUCTION

Suspension bridges with great span length are very flexible compared with other types of
bridge structures, and as a result their dynamic behavior under oscillations often
constitutes serious problems. When the suspension bridge is subjected to aerodynamic
forces, earthquake ground motion and unsymmetric traffic loads, torsional vibration of
the suspension bridge may be produced. Each of these dynamic loads produces vibrational
torque of the deck about the bridge’s longitudinal axis together with opposed phase vertical
vibration of two cables. As a prerequisite to further investigation of wind- and
earthquake-resistant designs of suspension bridges, it is necessary to accurately determine
dynamic characteristics such as the natural frequencies and mode shapes.

Free torsional vibrations of suspension bridges have been analyzed by the application
of an established method based on the linearized deflection theory [1–5]. This theory is
the most convenient analytical procedure in order to understand the structural behavior
of suspension bridges. It is still suitable and practical to calculate natural frequencies and
mode shapes of suspension bridges at the preliminary design stage. In recent years,
Abdel-Ghaffar [6–8] developed a method of analyzing free vertical, torsional and lateral
vibrations of suspension bridges through a digital computer and a finite element approach.
Computer methods using discrete structural elements are available for that various
complexities such as tower movement, hanger extension, different stiffening structures
(plate–girder type and truss type), and so forth can be taken into account. However, it
requires the use of a large computer to solve the eigenvalue problem for large order
matrices.

The purpose of this study is to investigate the effect of gravitational stiffness of stiffening
girders upon free torsional vibration of suspension bridges. Although many papers dealing
with free torsional vibrations of suspension bridges have been published, there have been
comparatively few studies on gravitational stiffness due to the deck dead load. Only a few
studies have been made on suspension bridges in recent decades. The effect of gravity
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stiffness characteristics on deflections and bending moments of multispan suspension
bridges based on the deflection theory was studied by Jennings [9]. Woude [10] presented
a procedure for finding natural modes and frequencies of a simple span suspension bridge
with straight backstays. Yamaguchi et al. [11] theoretically investigated the effect of
gravitational stiffness on the fundamental frequency of torsional vibration with a
parameter of span length.

In the following study, the differential equation of motion governing torsional vibration
of suspension bridges, including the effect of gravitational stiffness of stiffening girders, will
be proposed. A procedure of free torsional vibration analysis is elucidated by the exact
method [12] based on the solutions of the fourth order differential equation of motion.
The analytical method which takes into account warping of the bridge deck cross-section,
support conditions of the stiffening girder and the effect of flexural stiffness of the towers
is designed to determine a sufficient number of natural frequencies and mode shapes of
torsional vibration. This method enables an accurate vibration analysis from lower modes
to higher modes. Furthermore, a numerical example which uses the data of an actual
long-span suspension bridge is presented to demonstrate the applicability of the analysis
developed here and to investigate the dynamic characteristics of suspension bridges.

2. BASIC ASSUMPTIONS

In analyzing free torsional vibration of suspension bridges, it is assumed that the hangers
are considered to be inextensible, the dead-load curve of the cable forms a parabola, and
the deformations of bridges are small. The torsional and warping stiffness, and the dead
load of the stiffening girders (or trusses) are assumed constant throughout each span,
although they may vary in the different spans. The original shape of every cross-section
is unaltered during vibration (i.e., no distorsional deformation), but the section may
undergo an out-of-plane deformation (warping). The additional horizontal component of
cable tensions and additional axial forces in the towers due to torsional vibration of the
suspension bridge are small in comparison with those due to the dead load. These
assumptions permit the analysis to be based on a linear differential equation.

The geometry and co-ordinate systems of multispan suspension bridges with different
types of stiffening girders are illustrated in Figure 1. The boundary conditions of stiffening
girders may be either discontinuous or continuous supports at the towers. Thus, the bridges
are divided into two different types of stiffening girders according to their characteristics.
Figure 1(a) shows a hinged suspension bridge (hinged-span type bridge). This structural
type is widely used and the hinged supports are located in the towers where they form a
pair on either side. Figure 1(b) shows a continuous suspension bridge (continuous-span
type bridge). The stiffening girder is continuously supported over all spans.

The connective conditions of the tower cable saddles are assumed to be as follows. In
the first place, the additional horizontal component of the cable tension Hp is assumed to
be the same on both sides of the tower in all spans of the cable (roller connection) as shown
in Figure 2(a). This presupposes that the tower cable saddles are free to move horizontally
upon roller nests and there is no tower resistance to displacement at the tower top.
Secondly, the additional horizontal component of the cable tension Hp,i on both sides of
the tower may differ slightly from the friction forces at the tower cable saddles (hinged
connection). This structural configuration means that the horizontal movement at the
tower top is accompanied by a horizontal component of the force between the cable and
the tower. The effect of the horizontal movement is considered in the cable equation which
relates the elastic stretching of the cable to geometric displacement. Figures 2(b) and 2(c)
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Figure 1. Geometry and co-ordinate system of multispan suspension bridge with different types of stiffening
girders. (a) hinged-span type; (b) continuous-span type.

Figure 2. Cable support conditions at tower top. (a) roller connection: (b) hinged connection (N=0); (c)
hinged connection (N$ 0).

Figure 3. Torsional deformation of suspension bridge with deck of finite depth. (a) geometry; (b) cable tensions
and dead load of stiffening girder.
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show the cases of both neglecting and considering the effect of the axial force Ni acting
on the tower top, respectively.

3. GRAVITATIONAL STIFFNESS

The torsional deformation of the deck cross-section which is symmetric in the center of
the section is shown in Figure 3. The vertical displacement v1 and v2 of cables resulting
from torsional deformation are given in terms of the vibrational angle of twist u

v1,2 =3(b/2)u, (1)

where b is the width of the deck cross-section.
The differential equation of the torsional vibration can be formulated by applying a

flexible cable theory which takes into account geometrical deformation effects. The elastic
cable reaction can be described by the following relationship [4]

Si +wc =−Hi(d2y/dx2 + 12vi/1x2), i=1, 2 (2)

H1,2 =Hw 3Hp , (3)

where Hi is the horizontal component of cable tension, which consists of the initial dead
load horizontal component of cable tension Hw and the additional increment of cable
tension Hp . Si is the hanger tension, wc is the dead load of one cable per unit length, and
y is the dead load curve of the cable.

Now, if the cable is perfectly flexible and inextensible, the equilibrium equation of the
cable curve is written accurately as

Hw d2y/dx2 =−(ws/2+wc), (4)

where ws is the dead load of the stiffening girder per unit length. Substituting equations
(1), (3) and (4) into equation (2), and the quadratic differential term is assumed to be
negligibly small. The hanger tension Si is expressed as follows:

S1,2 =ws/22 (Hwb/2)(12u/1x2)+Hpd2y/dx2). (5)

From consideration of the equilibrium of torsional deformation as illustrated in Figure
3, the torsional moment Mt is given as

Mt =S1(b/2− du)−S2(b/2+ du), (6)

where d is the vertical distance between the hanger connection point and the center of the
cross-section (half depth of the deck). Substituting equation (5) into equation (6), the
righting moment due to torsional deformation can be obtained as follows:

Mt =Hw(b2/2)(12u)/1x2)+Hpb d2y/dx2 −wsdu. (7)

The third term wsdu on the right side of the above equation is the gravitational stiffness
due to the dead load of the stiffening girder. The effects of gravitational stiffness on the
natural frequencies of torsional vibration of suspension bridges are discussed in detail
below.

4. ANALYSIS OF FREE TORSIONAL VIBRATION

4.1.       

By considering the righting moment Mt expressed in equation (7), the linealized
differential equation of motion governing torsional vibration of the ith span of a multispan
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suspension bridge is given as follows [4, 7]:
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(8)

where Ei is the modulus of elasticity, Iwi is the warping constant of the cross-section, ui is
the torsional displacement, xi is the co-ordinate system of the stiffening girder, Gi is the
shear modulus, Ji is the torsion constant, bi is the width of the deck, wi is the dead weight
of the bridge per unit length, wsi is the dead load of the stiffening girder per unit length,
Hp,i is the additional horizontal component of cable tension, di is the half depth of the deck,
Imi is the equivalent mass polar moment of inertia of the bridge cross-section, t is the time,
and the subscript i presents the various properties on the ith span.

There are two independent variables in equation (8) concerning the time t and the
distance xi along the stiffening girder. The solutions can be written in the following
well-known form

ui = u�i (xi ) exp(jvt), Hp,i =H�p,i = exp(jvt), (9)

in which

u�i (xi )= exp(lixi /Li ), (10)

and H�p,i is the amplitude of Hp,i , v is the natural circular frequency of the
suspension bridge, j=z−1, and li is the undetermined parameter. The
following characteristic equation is obtained by substituting equations (9) and (10) into
equation (8)
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210li
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The solution to the above equation can be expressed by using the following trigonometric
and hyperbolic functions:

u�i (xi )=Ai cos
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+Bi sin
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in which

mi =Liz((2GiJi +Hwb2
i )/2EiIwi )(Zi −1), vi =Liz((2GiJi +Hwb2

i )/2EiIwi )(Zi +1),

Zi =z1+16EiIwi (Imi v
2 −wsidi )/(2GiJi +Hwb2

i )2, (13)

and the unknown constants Ai , Bi , Ci and Di are determined by the boundary conditions
of the stiffening girders.

4.2.  

The cable equation provides a compatibility condition relating the changes which occur
in the cable tension, to the changes in cable geometry, when the cable is displaced in-plane
from its original equilibrium position. The different connection types of cable supports at
the tower top are considered in the cable equation, which relates the elastic stretching of
the cable to geometric displacement [13, 14].
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In the first place, the roller connection as shown in Figure 2(a) is considered. The
horizontal components of the cable tension Hw and Hp must be identical on both sides of
the tower in all spans of the cable. The cable equation in the case of the roller connection
is

Lc

EcAc
Hp − s

n

i=1

wibi

2Hw g
Li

0

ui dxi =0, Lc = s
n

i=1

Lc,i = s
n
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Li

0 0dsi

dxi1
3

dxi , (14)

where Ec is the modulus of elasticity of the cable, Acis the cross-sectional area of the cable,
Lc and Lc,i are virtual lengths of the cable, dsi is the length of the cable element in the ith
span, and n is the number of spans.

As the second alternative, the hinged connection as shown in Figures 2(b) and 2(c) is
considered. This rocked type with a pin-bearing at the tower top provides one of
the simplest and safest constructions, but the friction forces at the fixed tower cable
saddles are so high that the tower tops move in unison with the adjacent cables. If
the tower is flexible such as in the cantilever beam, then a horizontal displacement at the
tower top is produced. The cable equations for the n-span suspension bridge are given as
follows:

Lc,i

EcAc
Hp,i −

wibi

2Hw g
Li

0

ui dxi =−dl
i + dr

i , (15)

where dl
i and dr

i are horizontal displacements of the tower top at the left and right
ends of the ith span, respectively. These displacements dl

i and dr
i can be expressed as the

product of the elastic resistance of the tower and the difference Hp,i−1 −Hp,i of the
additional horizontal component of the cable tension caused by inertia forces. In the case
where the effect of the axial force Ni is neglected, these displacements are expressed by the
following:

dl
i =−(L3

t,i−1/3EtIt,i−1)(Hp,i−1 −Hp,i), dr
i =−(L3

t,i/3EtIt,i)(Hp,i −Hp,i+1), (16)

where EtIt,i is the average flexural stiffness of the ith tower, and Lt,i is the height of the
ith tower. In the case where the effect of the axial force Ni is considered, equation (16)
may be written as

dl
i =−(Lt,i−1/Ni−1)(Ti−1 −1)(Hp,i−1 −Hp,i), dr

i =−(Lt,i/Ni)(Ti −1)(Hp,i −Hp,i+1),

(17)

in which the coefficients Ti are defined as

Ti =tan (kiLt,i)/kiLt,i , ki =zNi/EtIt,i . (18)

4.3.  

The boundary conditions at the supports of the stiffening girder of multispan suspension
bridges are summarized in Table 1. The following matrix notation may be obtained by
substituting equation (12) into the equations of the boundary conditions:

Aa=Hh, (19)

in which
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T 1

Boundary conditions of stiffening girders

Supports Hinged-span type Continuous-span type

Left end; u�1(0)=0 u�1(0)=0
x1 =0 for i=1 E1Iw1u�01 (0)=0 E1Iw1u�01 (0)=0

Intermediate supports; u�i−1(Li−1)=0 u�i−1(Li−1)=0
xi−1 =Li−1 and xi =0, Ei−1Iw,i−1u�0i−1(Li−1)=0 u�'i−1(Li−1)= u�'i (0)
for i=2, 3, . . . , n u�i(0)=0 u�i(0)=0

EiIwiu�0i (0)=0 Ei−1Iw,i−1u�0i−1(Li−1)=EiIwiu�0i (0)

Right end; u�n(Ln)=0 u�n(Ln)=0
xn =Ln for i= n EnIwnu�0n (Ln)=0 EnIwnu�0n (Ln)=0

a= {A1, B1, C1, D1, A2, B2, C2, D2, . . . , An , Bn , Cn , Dn}T,

h= {H� p,1, H� p,2, . . . , H� p,n , }T, (20)

and the orders of the coefficients matrices A and H are 4n×4n and 4n× n, respectively.
The vectors a and h are unknown constants of the orders 4n×1 and n×1, respectively.

Next, the cable equations expressing the relationship between torsional amplitude of
vibration u�i(xi) and the cable tension H� p,i are applied to determine the natural circular
frequency v. By substituting equation (12) into either equation (14) or equation (15), the
relation between the vectors a and h can also be obtained as follows:

Ga=Eh. (21)

The coefficients matrices G and E are of the orders n×4n and n× n, respectively. It should
be pointed out that the vector h in equation (20) will be reduced to a single element for
the roller cable connection at the tower top, because the unknown constant Hp in equation
(14) is only a term throughout each span. Then, the matrices H and G and the square
matrix E are reduced to a column matrix of order 4n and a row matrix of order 4n and
a single element, respectively.

The homogeneous equation on the vector a is obtained by eliminating the vector h from
equations (19) and (21), as follows

(A−HE−1G)a= 0. (22)

The solution of equation (22) is possible only when the determinant of the coefficient
matrix vanishes, as,

det =A−HE−1G==0. (23)

This equation is the frequency equation of suspension bridges and is a transcendental
equation on the natural circular frequencies v. The roots may be computed by applying
the Regula–Falsi method [15, 16] and by using a high-speed digital computer.
Furthermore, the relative magnitude of the vectors a and h can be found from equations
(22) and (21), respectively.

5. NUMERICAL RESULTS

A numerical example is presented to demonstrate the effectiveness of the analytical
method developed here and to describe some dynamic characteristics of torsional



MODE WT (s) MODE WT (s)

1 2.507854 1 2.506972

2 1.753304 2 1.727076

3 1.314562 3 1.269526

4 1.251678 4 1.235670

5 1.155900 5 1.120609

6 0.870891 6 0.855984

7 0.688673 7 0.679684

8 0.566652 8 0.606734

(a) (b)
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vibrations of suspension bridges. Computations using data from the Innoshima
Suspension Bridge located between Honshu and Shikoku in Japan provide the basis
for this example. The geometry of the bridge and the structural properties necessary
for a torsional vibration analysis are given as follows: (1) Stiffening girder,
L1 =L3 =250 m, L2 =770 m, b=26 m, d=4·5 m, ws1 =ws3 =1·597×105 N/m,
ws2 =1·555×105 N/m, Iw1 = Iw3 =393·2 m6, Iw2 =324·4 m6, J1 = J3 =2·901 m4,
J2 =4·169 m4, Im1 = Im3 =2·170×106 Ns2, Im2 =2·136×106 Ns2, E=2·06×1011 N/m2,
G=7·95×1010 N/m2, (2) cable, cable sag length in main span f=76 m, Ac =0·2281 m2,
Hw =1·943×108 N, wc =4·724×104 N/m, Ec =1·962×1011 N/m2, and (3) tower,
Lt,1 =Lt,2 = 138·85 m, It,1 = It,2 = 3·320 m4, Et =206×1011 N/m2.

Figure 4. Computed natural mode shapes of torsional vibration. (a) hinged-span type; (b) continuous-span
type.
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Figure 4 shows the natural mode shapes of torsional vibration in the case of the hinged
connection (N=0) as shown in Figure 2(b). In the first few symmetric mode shapes of
the hinged-span type bridge, the stiffening girders of the center span and the side spans
vibrate together. But in the asymmetric mode shapes, the stiffening girders of the center
span and the side spans vibrate separately. Another characteristic of the mode shapes of
hinged suspension bridges is that they produce discontinuous forms at the intermediate
supports. On the other hand, in both asymmetric and symmetric modes of the continuous-
span type bridge, the stiffening girders of the center and side spans always vibrate together
from the first mode to the higher modes. The continuous suspension bridges have no
discontinuous torsional slope at the intermediate supports.

Some of the computed natural periods of the hinged-span and the continuous-span types
are presented for the first five modes of the asymmetric and symmetric vibrations in Tables
2 and 3, respectively. In the lower modes, there is a slight difference between the roller
connection and the hinged connection. In the hinged modes, the effect of cable supports
at the top of the tower is not recognized.

In the first five natural periods of asymmetric and symmetric modes, there is a
considerable difference between the hinged-span type and the continuous-span type
bridges. This result can be estimated from the fact that there is a distinct difference in the
mode shapes of both types of suspension bridges as shown in Figure 4. In particular, the
torsional slope mode shapes of two hinged suspension bridges have a discontinuous form
at the intermediate supports of the stiffening girders. The values of the natural periods of
hinged suspension bridges are generally large in comparison with those of continuous
suspension bridges.

The effect of the gravitational stiffness upon the natural periods is described below. As
shown in Tables 2 and 3, the values of the natural periods of suspension bridges with
gravitational stiffness are smaller than those of suspension bridges without gravitational
stiffness. The natural periods of suspension bridges in either case of the hinged-span type
and the continuous-span type have a tendency to decrease in a free torsional vibration
analysis which takes into account the gravitational stiffness of the stiffening girders. The
effect of the gravitational stiffness become more pronounced for the first natural period

T 2

Effect of gravitational stiffness on natural periods (in seconds) of torsional vibration
(hinged-span type)

Without gravitational stiffness With gravitational stiffness
Mode types ZXXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

of Hinged Hinged Hinged Hinged
tortional Mode Roller connection connection Roller connection connection
vibration order connection (N=0) (N$ 0) connection (N=0) (N$ 0)

Asymmetric 1 1·7761 1·7761 1·7761 1·7533 1·7533 1·7533
mode 2 1·3251 1·3242 1·3252 1·3154 1·3146 1·3155

3 0·8736 0·8736 0·8736 0·8709 0·8709 0·8709
4 0·5674 0·5674 0·5674 0·5667 0·5667 0·5667
5 0·4112 0·4112 0·4112 0·4109 0·4109 0·4109

Symmetric 1 2·5781 2·5760 2·5783 2·5098 2·5079 2·5100
mode 2 1·2602 1·2600 1·2602 1·2519 1·2517 1·2519

3 1·1624 1·1624 1·1624 1·1559 1·1559 1·1559
4 0·6900 0·6900 0·6900 0·6887 0·6887 0·6887
5 0·4784 0·4784 0·4784 0·4780 0·4780 0·4780
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T 3

Effect of gravitational stiffness on natural periods (in seconds) of torsional vibration
(continuous-span type)

Without gravitational stiffness With gravitational stiffness
Mode types ZXXXXXXCXXXXXXV ZXXXXXXCXXXXXXV

of Hinged Hinged Hinged Hinged
tortional Mode Roller connection connection Roller connection connection
vibration order connection (N=0) (N$ 0) connection (N=0) (N$ 0)

Asymmetric 1 1·7489 1·7489 1·7489 1·7271 1·7271 1·7271
mode 2 1·2789 1·2782 1·2790 1·2703 1·2695 1·2703

3 0·8586 0·8586 0·8586 0·8560 0·8560 0·8560
4 0·6077 0·6077 0·6077 0·6067 0·6067 0·6067
5 0·5540 0·5540 0·5540 0·5533 0·5533 0·5533

Symmetric 1 2·5771 2·5750 2·5774 2·5089 2·5070 2·5091
mode 2 1·2438 1·2436 1·2439 1·2359 1·2357 1·2359

3 1·1265 1·1265 1·1265 1·1206 1·1206 1·1206
4 0·6810 0·6810 0·6810 0·6797 0·6797 0·6797
5 0·6021 0·6021 0·6021 0·6012 0·6012 0·6012

of the symmetric vibration mode, and the values of a natural period decrease
approximately 2·7% in comparison with suspension bridges without the gravitational
stiffness. The effect of the gravitational stiffness gradually decreases as the number of mode
orders increases. Consequently the effect of the gravitational stiffness upon free torsional

T 4

Effect of d on natural periods (in seconds) of hinged suspension bridge with roller cable
connection

Mode types of d
tortional Mode ZXXXXXXXXXXXCXXXXXXXXXXXV
vibration order 1·31 2·0 3·0 4·0

Asymmetric mode 1 1·7761 1·7631 1·7355 1·6991
(1·000)† (0·993) (0·977) (0·957)

2 1·3251 1·2897 1·2215 1·1420
(1·000) (0·973) (0·922) (0·862)

3 0·8736 0·8495 0·8032 0·7495
(1·000) (0·972) (0·919) (0·858)

4 0·5674 0·5355 0·4811 0·4269
(1·000) (0·944) (0·848) (0·752)

5 0·4112 0·3747 0·3202 0·2728
(1·000) (0·911) (0·779) (0·663)

Symmetric mode 1 2·5781 2·5699 2·5545 2·5367
(1·000) (0·997) (0·991) (0·984)

2 1·2602 1·2306 1·1726 1·1041
(1·000) (0·977) (0·930) (0·876)

3 1·1624 1·1438 1·1060 1·0584
(1·000) (0·984) (0·951) (0·911)

4 0·6900 0·6617 0·6102 0·5549
(1·000) (0·959) (0·884) (0·804)

5 0·4784 0·4438 0·3887 0·3375
(1·000) (0·928) (0·813) (0·705)

†Numbers in brackets indicate ratio of natural frequencies to the parameter d=1·31.
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vibrations of suspension bridges is comparatively small and is limited only to the first few
modes. It is necessary to consider the effect of gravitational stiffness in the case of suspension
bridges with higher deck such as truss-type stiffening girder, and the decrement of the first
natural period of symmetric torsional mode is favorable for the aerodynamic stability.
However, in the case of suspension bridges with a large width/depth ratio (b/2d) of deck such
as flat box girder, the effect of gravitational stiffness is insignificant and may be negligibly
small.

The following non-dimensional parameter d is defined for the study of torsional vibration
of suspension bridges:

d=zEIw/GJb2 , (24)

where EIw and GJ are the average warping and torsional stiffness of the cross-section of
bridge deck, respectively. Tables 4 and 5 show the effect of the torsional parameter d on
the natural periods of the suspension bridge for the hinged and continuous stiffening
girders, respectively. The quantities shown in the brackets indicate the ratio of natural
frequencies to the parameter d=1·31. For both tables, the roller cable connection is
considered, and the effect of the gravitational stiffness is neglected in order to simplify
numerical calculations. The increase of the parameter d indicates the increase of warping
stiffness of the bridge. The natural periods in the case of d=1·31 shown in Tables 4 and
5 correspond to those of the roller connections in Tables 2 and 3. It is observed that the
values of natural periods decrease with the increase of the torsional parameter d. The

T 5

Effect of d on natural periods (in seconds) of continuous suspension bridge with roller cable
connection

Mode types of d
tortional Mode ZXXXXXXXXXXXCXXXXXXXXXXXV
vibration order 1·31 2·0 3·0 4·0

Asymmetric mode 1 1·7489 1·7225 1·6764 1·6218
(1·000)† (0·985) (0·959) (0·927)

2 1·2789 1·2215 1·1283 1·0331
(1·000) (0·955) (0·882) (0·808)

3 0·8586 0·8259 0·7673 0·7029
(1·000) (0·962) (0·894) (0·819)

4 0·6077 0·5548 0·4846 0·4238
(1·000) (0·913) (0·797) (0·679)

5 0·5540 0·5100 0·4366 0·3705
(1·000) (0·921) (0·788) (0·669)

Symmetric mode 1 2·5771 2·5674 2·5473 2·5211
(1·000) (0·996) (0·988) (0·978)

2 1·2438 1·2114 1·1560 1·0944
(1·000) (0·974) (0·929) (0·880)

3 1·1265 1·0833 1·0074 1·9250
(1·000) (0·962) (0·894) (0·821)

4 0·6810 0·6476 0·5895 0·5295
(1·000) (0·951) (0·866) (0·778)

5 0·6021 0·5419 0·4586 0·3895
(1·000) (0·900) (0·762) (0·647)

† Numbers in brackets indicate ratio of natural frequencies to the parameter d=1·31.
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calculated results indicate that the natural periods are significantly reduced for the higher
modes. From a comparison of natural periods in Tables 4 and 5, the natural periods of
the continuous-span type bridge show a more considerable variation than those of the
hinged-span type bridge. In other words, it is considered that the continuous suspension
bridge is sensitive to the effect of warping stiffness of the deck in comparison with the
two-hinged suspension bridge.

6. CONCLUSIONS

An analytical method for free torsional vibration of suspension bridges, including the
effect of gravitational stiffness due to the dead load of the stiffening structure, has been
developed in this study. The formulation of the dynamic problem is based on the linealized
deflection theory and the frequency equation is derived effectively by using the general
solutions of the differential equation of motion.

It is concluded from the numerical results that the effect of cable support conditions at
the tower top upon the natural periods of suspension bridges is small. However, the effect
of the boundary conditions of stiffening girders is considerable. The values of the natural
periods of hinges suspension bridges are generally larger than those of continuous
suspension bridges. The computed natural periods have a tendency to decrease as the
gravitational stiffness of the stiffening girders is considered in a torsional vibration analysis
of suspension bridges. The effect of the gravitational stiffness is comparatively small and
is limited to ony the first few modes. Also, the natural periods of torsional vibration are
significantly reduced with the increase of the warping stiffness of the deck. The continuous
suspension bridges are very susceptible to effect of warping stiffness in comparison with
the hinged suspension bridges.
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16. B. W 1966 Theoretical Numerical Analysis. New York: Academic Press.


